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  A BSTRACT  
 Drug-induced hypersensitivity reactions are a major prob-
lem in both clinical treatment and drug development. This 
review covers recent developments in our understanding of 
the pathogenic mechanisms involved, with special focus on 
the potential role of metabolism and bioactivation in gener-
ating a chemical signal for activation of the immune system. 
The possible role of haptenation and neoantigen formation 
is discussed, alongside recent fi ndings that challenge this 
paradigm. Additionally, the essential role of costimulation 
is examined, as are the potential points whereby costimula-
tion may be driven by reactive metabolites. The relevance 
of local generation of metabolites in determining the loca-
tion and character of a reaction is also covered.  

   K EYWORDS:     Hypersensitivity  ,   drug metabolism  ,   bio-
activation  ,   sulfamethoxazole    

   INTRODUCTION 
 Adverse drug reactions are a common clinical problem that 
can often compromise good patient care. A large-scale meta-
analysis estimated that adverse drug reactions occur in as 
many as 15% of all hospital patients, 1  although this estimate 
has been widely disputed. 2  In a more recent prospective 
study in the United Kingdom, the proportion of hospital 
admissions directly caused by adverse drug reactions was 
5.2%. 3  Most of these reactions (76.2%-95%) were defi ned 
as Type A (dose-dependent) reactions by the defi nition of 
Rawlins and Thompson, 4  while the remainder were Type B 
(idiosyncratic). 
 Idiosyncratic reactions are a major cause of drug withdrawal 
both late in drug development and at the postmarketing 
stage. Such idiosyncratic reactions contribute to the high 
level of attrition that is presently encountered in drug devel-
opment, either early in development as a result of crude 
screening techniques, or when such reactions are identifi ed 

in clinical trials. It is therefore imperative that we under-
stand the fundamental mechanisms involved in idiosyn-
cratic reactions. 
 Hypersensitivity reactions are idiosyncratic reactions that 
involve activation of a pathogenic, drug-specifi c immune 
response. However, because of obvious diffi culties in deter-
mining cause in clinical practice, the term is generally used 
to describe adverse drug reactions with concurrent fever, 
rash, and/or internal organ involvement. 5  This extends from 
minor rashes to severe, potentially fatal reactions such as 
Stevens-Johnson syndrome and toxic epidermal necrolysis. 
In this review we will concentrate particularly on T-cell-
mediated reactions, although immunoglobulin E (IgE)-
mediated and IgG-mediated reactions are also of clinical 
importance, particularly for penicillins. 6   

  MECHANISMS OF DRUG ANTIGEN-SPECIFIC 
T-CELL ACTIVATION 
 Drug antigen-specifi c T cells have been isolated, cloned, 
and characterized from hypersensitive patients in terms of 
their cellular phenotype and functionality. 7  ,  8  Isolated T cells 
can express either the CD4 or the CD8 coreceptor, or both. 
Drug stimulation results in secretion of high levels of polar-
izing cytokines, 9-16  and Fas ligand (FasL) or perforin-medi-
ated killing of autologous keratinocytes. 17  ,  18  Furthermore, 
drug-specifi c CD8+ T cells have also been identifi ed and 
characterized in blister fl uid taken from patients with toxic 
epidermal necrolysis. 19  ,  20  A major focus of this review is to 
describe our current understanding of the mechanisms of 
T-cell activation in terms of the nature of the antigen pre-
sented and the role of metabolic drug activation. 

 In 1935, Landsteiner and Jacobs undertook a series of semi-
nal studies on the sensitization potential of low-molecular-
weight organic compounds. 21  They found a strong correlation 
between the sensitization potential in vivo and the protein 
reactivity in vitro. These fi ndings have formed the basis of 
the hapten hypothesis, which posits that drugs — or more 
commonly, reactive metabolites formed by the normal pro-
cesses of metabolizing enzymes — are recognized by only 
drug-specifi c T cells following haptenation to self-proteins. 22  
This leads to formation of a neoantigen that can be recog-
nized by T cells to override self-tolerance, and induction of 
a potentially pathogenic immune response. This mechanism 
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has been well documented for contact sensitizers such as 
dinitrochlorobenzene 23  ,  24  and respiratory allergens such as 
trimellitic anhydride. 25  ,  26  More speculatively, it is thought 
to be a mechanism for the breaking of self-tolerance in auto-
immunity. 27-29  However, until recently there has been little 
direct evidence for its importance in drug hypersensitivity. 
 Recent studies exploring mechanisms of drug hypersensitiv-
ity have focused on sulfamethoxazole, because it is known 
to cause hypersensitivity and because much is known about 
its disposition in the body. As such, sulfamethoxazole will be 
used as an example throughout this review ( Figure 1  depicts 
our current understanding of sulfamethoxazole metabolism 
and the role of metabolic drug activation in the generation of 
antigen-specifi c T cells in sulfamethoxazole hypersensitiv-
ity). Sulfamethoxazole is metabolized by CYP2C9 in human 
liver to a proreactive hydroxylamine metabolite. 30-33  Sulfa-
methoxazole hydroxylamine is spontaneously converted to 
nitroso sulfamethoxazole, 34  ,  35  which is unstable and reacts 
with the hydroxylamine to generate azo and azoxy dimers. 
Further oxidation can also generate nitro sulfamethoxazole. 36  
Importantly, reduction of nitroso sulfamethoxazole can occur 
either via interaction with  nonprotein thiols (eg, glutathione) 
and ascorbate, or enzymatically. 30  ,  37  Thus, the critical  balance 
between metabolic activation and detoxifi cation in a given 
cell system  ultimately determines the level of exposure to 
nitroso sulfamethoxazole. It is therefore interesting to note 
that thiol and ascorbate defi ciencies have been reported with 
HIV infection, 38-40  which may thereby lead to a decreased 
capacity to reduce nitroso sulfamethoxazole 38  and an in -
creased metabolite-mediated lymphocyte toxicity, 41  along-
side a greatly increased risk of hypersensitivity reactions. 42  
 However, viral infection will also have signifi cant immuno-
logical effects unrelated to metabolite detoxifi cation, such as 
deranged regulatory mechanisms. 43  Additionally, some stud-
ies have failed to fi nd a link, 44  so this remains controversial.   
 Nitroso sulfamethoxazole binds covalently to cellular pro-
teins. 45-49  Such binding above a threshold level may be 
responsible for the direct toxic effects of sulfamethoxa-
zole. 36  ,  49  The intrinsic instability of nitroso sulfamethoxa-
zole suggests that localized generation and covalent bind ing, 
both in skin or in antigen-presenting cells, will render pro -
teins immunogenic and therefore be the source of the ulti-
mate antigenic determinant. T cells isolated from patients 
hypersensitive to sulfamethoxazole and structurally unre-
lated drugs, as well as animal models of immunogenicity, 
have been used to explore the nature of the interaction 
between chemicals and immunological receptors. T cells 
can be stimulated by either (1) protein-reactive electrophilic 
metabolites bound directly to major histocompatibility com-
plex (MHC) via a stable covalent bond, 50  ,  51  or (2) processed 
peptides derived from conjugated protein. 10  ,  36  
 It is also worth pointing out that almost all drugs associated 
with a comparatively high incidence of hypersensitivity 

reactions are known to form reactive metabolites. It is not 
known whether this is simply observational bias, due to the 
increased research focus on these drugs, or is of genuine 
importance. 
 Recently, an alternative hypothesis known as the P-I con-
cept has been proposed. The P-I concept posits that drugs 
can activate T cells directly in the absence of metabolism, 
covalent binding, and processing, 52  through a reversible 
interaction between the T-cell receptor, MHC, and the drug. 
This has been unquestionably demonstrated using T-cell 
clones from patients ex vivo for several drugs, including sulfa -
methoxazole, 13  lidocaine, 53  carbamazepine, 9  lamotrigine, 11  
and phenindione, 10  but there is as yet little evidence that 
this complex is suffi cient to induce a primary immune 
response. Criticisms of these fi ndings have been based on 
the requirement for in vitro expansion of drug-specifi c T 
cells prior to cloning, which could affect the apparent 
makeup of drug-specifi c T cells. Recently, this point was 
addressed by Nassif et al, 19  who identifi ed parent drug –
  specifi c T cells from blister fl uid in toxic epidermal necroly-
sis patients. However, their interpretations regarding the 
lack of a role for metabolism remain controversial since 
blister fl uid T cells from  all  patients also responded to 
nitroso  sulfamethoxazole. 54  Engler et al 55  successfully 
induced a primary T-cell immune response in vitro against 
sulfamethoxazole using blood from 3 of 10 healthy individ-
uals previously not exposed to the drug. However, nitroso 
sulfamethoxazole-specifi c cytotoxic T-cell responses were 
detected using blood from 9 of 10 of the same healthy vol-
unteers; thus, the question as to whether non – covalently 
bound drug or covalently bound metabolite stimulates 
pathogenic T cells has not been fully elucidated and war-
rants further investigation. A particular area that has not 
been studied previously is the ability of peptides derived 
from drug-metabolite modifi ed cutaneous or immune cell 
protein to stimulate T cells from hypersensitive patients. 
 Of course, the apparently competing hypotheses described 
above are by no means mutually exclusive. For instance, 
since sulfamethoxazole and nitroso sulfamethoxazole-
 specifi c T cells coexist in all patients studied so far, 51  metab-
olism and haptenation may be required for initiation of an 
immune response, and during the response avidity spread-
ing occurs to the continually present parent drug.  

  DANGER SIGNALING, DRUG METABOLISM, AND 
DRUG HYPERSENSITIVITY 
 The danger hypothesis, postulated by Polly Matzinger 56  as 
an extension of Charles Janeway ’ s work on the links between 
the innate and the adaptive immune systems, 57  holds that 
the nonself nature of a foreign antigen is not what induces 
an immune response; instead, it is  “ danger signals, ”  such as 
cell damage or infection, that activate the immune system. 
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Therefore, it can be said that effective activation of the 
adaptive immune system requires 2 signals 58 : signal 1, 
which is the T-cell-receptor-mediated recognition of an 
MHC-restricted antigen; and signal 2, which represents the 
interactions between various costimulatory ligands and 
receptors between the T cell and the antigen-presenting cell, 
such as CD28:CD86 and CD40:CD154. In the absence of 
signal 2, signal 1 simply leads to tolerance, either by anergy 
or by apoptosis of responding T cells. 59  Danger signals act 
via this signal 2 pathway, by upregulating costimulatory 
markers on professional antigen-presenting cells, such as 
dendritic cells. Several studies have focused on the ability 

of stressed, dead, or dying cells to provide maturation sig-
nals to dendritic cells. Initial studies revealed that cells 
killed necrotically, but not viable or apoptotic cells, activate 
dendritic cells. 60  Heat shock proteins released from dying 
cells are obvious candidates as danger-signaling molecules, 
and their ability to provide maturation signals to dendritic 
cells has been discussed in detail elsewhere. 61  More recently, 
a groundbreaking study by Shi et al 62  used chemical ana-
lyses to defi ne uric acid crystals as potent messengers that 
are released by injured and dying cells and that can stimulate 
dendritic cell maturation and enhance CD8+ T-cell responses 
in vivo. 

  Figure 1.    Under our current understanding, sulfamethoxazole can induce a hypersensitivity reaction by acting as an antigen, either as 
the parent drug or as a protein conjugate. Additionally, the reactive metabolite can cause cell damage, leading to danger signaling and 
activation of costimulatory pathways. CYP indicates cytochrome P450; MPO, myeloperoxidase; COX, cyclooxygenase; SMX, 
sulfamethoxazole; TCR, T-cell receptor; MHC, major histocompatibility complex.   
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 When considering the potential for drug metabolites to 
interact with dendritic cells and provide maturation signals, 
lessons can be learned from studies with contact sensitizers, 
which because of their intrinsic protein reactivity are often 
toxic to immune cells at relatively low concentrations. This 
toxicity can be the result of covalent binding, either to 
specifi c target proteins, for instance Keap1, 63  or nonspe-
cifi cally, potentially exposing hydrophobic residues and 
activating toll-like receptors. 64  Alternatively, this toxicity 
could be due to the generation or impaired detoxifi cation of 
reactive oxygen species, a major factor in activation of the 
proinfl ammatory NF-kB pathway, 65  which is essential for 
complete dendritic cell maturation. 66  ,  67  It has been sug-
gested that dendritic cell maturation may be due to inactiva-
tion of thioredoxin reductase and consequent impaired 
detoxifi cation of reactive oxygen species. 68  However, this 
direct activation is inhibited by thiol antioxidants 69  but not 
other antioxidants, suggesting that the effect of thiol anti-
oxidants is not solely due to radical scavenging. This idea is 
supported by the fi nding that glutathione depletion enhances 
this activation. 70  A wide variety of structurally unrelated 
contact sensitizers have been found to provoke signal 2 via 
direct activation of dendritic cells and monocytes, as deter-
mined by either upregulation of cell surface markers, par-
ticularly CD80, CD86, CD40, HLA-DR, 71-74  or chemokine 
receptors 75 ; by activation of signal transduction path-
ways 69  ,  76-79 ; or by functional effects, for instance, enhanced 
activation of allogeneic T cells 72  ,  80  ,  81  or in vivo sensitiza-
tion. 82  Recently, Hulette et al 83  showed that contact sensitiz-
ers stimulate dendritic cell maturation only at concentrations 
associated with low levels of cell death, presumably via a 
classical  “ danger ”  response 56  and the recognition of released 
endogenous signals. 60  ,  62  However, in recent unpublished 
experiments, using the hair dye allergen p-phenylenedi-
amine as a paradigm, we have shown that dendritic cell 
maturation can be induced at nontoxic concentrations, as 
measured by increased expression of CD40 and stimulation 
of allogeneic lymphocyte proliferation. CD40 receptor 
ligand binding is known to stimulate an important signaling 
pathway that results ultimately in further dendritic cell 
 maturation. 84  In addition, abnormal CD40 signaling in 
certain autoimmune diseases is thought to contribute to dis-
ease progression, 85  ,  86  and as such, the focus of our current 
research is to determine whether CD40 signaling is related 
to susceptibility to p-phenylenediamine sensitization. 

 Based on the observation that many protein-reactive drug 
metabolites bind covalently to thiol-rich protein, it is not a 
great leap to imagine that a similar effect may be driven by 
drug metabolites, although there is no published evidence 
that this occurs. 

 Several studies indicate a trend toward higher drug metabo-
lite-mediated toxicity to immune cells from patients with 
drug hypersensitivity. 87-90  However, whether these observa-

tions refl ect differences in cellular metabolism, the extent or 
site of protein binding, or modulation of intracellular defense 
pathways is not known. 
 In unpublished experiments, we have shown the presence of 
sulfamethoxazole metabolite-modifi ed intracellular proteins 
when sulfamethoxazole was incubated in vitro with den-
dritic cells. Dendritic cell metabolism of sulfamethoxazole 
resulted in covalent modifi cation of endogenous protein and 
subsequent increased expression of the dendritic cell cost-
imulatory receptor CD40. When mice were administered 
nitroso sulfamethoxazole in the presence of an anti-CD40 
ligand-blocking antibody, drug metabolite-specifi c T-cell 
proliferation was completely inhibited. Thus, the CD40 sig-
naling pathway seems to be important in the development 
of sulfamethoxazole immunogenicity. Further studies are 
underway to explore the effects of sulfamethoxazole treat-
ment on dendritic cells from hypersensitive patients to eval-
uate whether altered immune cell metabolism and dendritic 
cell activation are associated with individual susceptibility.  

  LOCATION OF METABOLIC DRUG ACTIVATION 
AND ITS RELEVANCE TO DRUG HYPERSENSITIVITY 
 The following section provides a brief overview of the 
importance of organ/tissue-specifi c metabolic drug activa-
tion in the development of drug hypersensitivity in some 
individuals but not others. Because space is limited, we 
have focused on metabolism in the liver, the skin, and the 
immune system. Although the liver is known to be the most 
important location for drug metabolism in the body, extra-
hepatic metabolism is also suspected to have an important 
role in the induction of hypersensitivity reactions.  Table 1  
shows the relative abundance of certain enzymes in a given 
cell type.    

  LIVER 
 Quantitatively, the liver is the most important organ for drug 
metabolism. Hepatic metabolism, primarily via cytochromes 
P450 (CYP), is the main route of bioactivation for drugs that 
have been linked to hypersensitivity, such as sulfamethoxa-
zole, 100  carbamazepine, 101  ,  102  phenytoin, 103  abacavir, 104  and 
halothane. 105  In most (although not all) cases, the reactive 
species formed are so reactive that they are unlikely to sur-
vive long in circulation, which implies that the liver will 
receive much greater exposure from reactive metabolites 
than other tissues. However, despite the increased exposure, 
the liver is rarely the main target for antigen- specifi c T cells. 
There are 2 likely reasons for this discrepancy. First, the 
liver is very well protected from toxic insult 106  by cellular 
cytoprotective measures, such as high glutathione and 
N-acetylcysteine levels, and readily activates further de -
fenses via Nrf2 and NF-kB driven transcription. Second, the 
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liver is an immunologically privileged organ, 107  and hepatic 
activation of T cells by Kupffer cells is likely to lead to tol-
erance rather than a pathogenic immune response. This is 
believed to be at least partly due to increased expression of 
FasL in nonlymphoid hepatic tissue, 108  which will drive T 
cells to apoptosis rather than activation. 
 Halothane hepatitis is well studied as a model of drug-induced 
immune-mediated hepatotoxicity. A transient increase in 
transaminases is seen in up to 20% of patients, whereas a 
severe reaction, characterized by massive cell necrosis, 
occurs in ~1 patient per 35 000 on primary exposure, and 1 in 
3700 on secondary exposure. 109  Halothane is metabolized in 
the liver, predominantly by CYP2E1, 110  to trifl uoroacetic 
acid, chloride, and bromide. 111  However, the reactive metab-
olite trifl uoroacetyl chloride is also formed, which readily 
forms trifl uoroacetyl adducts to free amino groups on hepatic 
proteins. 112  The role of metabolism in the hepatitis associated 
with halothane administration is best illustrated by a global 
consideration of the relationship between the in vivo metabo-
lism of general anesthetics and the observed incidence of 
adverse drug reactions in humans. Up to 50% of methoxyfl u-
rane and halothane is excreted as metabolites in human urine, 
and their administration is associated with severe toxicities. 
In contrast, less than 3% of enfl urane and isofl urane is 
excreted as urinary metabolites, and human exposure is only 
rarely associated with hepatotoxicity. 6  
 Antibodies to adducted neoantigens, particularly certain 
microsomal proteins, 113  have been identifi ed in the sera of 
halothane hepatitis patients, 114  which has led some to con-
clude that these adducts are immunologically relevant. 
However, similar adducts are found in nonhypersensitive 
halothane-exposed patients, where they do not appear to be 
pathogenic, 113  indicating that the major determinant of 
response may be idiosyncrasies in the immune system rather 
than generation of reactive metabolites and adducts. Addi-
tionally, although cellular reactivity to halothane has been 
identifi ed both in humans 115  and in a guinea pig model, 116  ,  117  
most studies have concentrated on the role of autoantibodies 
and antibodies to neoantigens. It is therefore possible that an 

important pathogenic mechanism is being overlooked, and 
further work is required in order to address this.  

  SKIN 
 Recently, there has been a lot of interest in the metabolic 
potential of the skin, 118  as skin is the most common site of 
hypersensitivity reactions (although it must be noted that we 
do not know how many minor hypersensitivity reactions are 
associated with subclinical internal organ damage). Kerati-
nocytes are metabolically active, expressing high levels of 
several CYP isoforms. 92  ,  119  CYP messenger RNA has also 
been identifi ed in other skin cell types, such as fi broblasts 
and melanocytes. 99  When the activity of primary keratino-
cytes is compared with primary liver tissue, 118  confl icting 
data have been obtained, which is likely to be due to the 
wide inter- and intraindividual variation in both skin and 
hepatic CYP expression. Interestingly, although most impor-
tant hepatic CYPs are expressed in the skin (including CYPs 
1A1, 1B1, 2B6, 2C9, and 3A4), there are several CYPs 
which are much more abundant in the skin, including several 
members of the CYP2 family that have never been identifi ed 
in the liver. 93  The relevance of this for hypersensitivity is not 
known, but it is possible that the relative proportion of 
metabolites produced in the skin may differ from those in the 
liver, with possible immunotoxicological implications. 
 One of the most important recent fi ndings in this area was 
the demonstration that primary keratinocytes are capable of 
oxidative metabolism of sulfamethoxazole to its corre-
sponding hydroxylamine metabolite, 48  which readily auto-
oxidizes to a highly protein-reactive arylnitroso species. 35  
Intracellular sulfamethoxazole-protein adducts have also 
been identifi ed in primary human keratinocytes when incu-
bated with sulfamethoxazole, and these adducts colocalize 
on the cell surface with HLA-ABC. 120  It is not known as yet 
whether these adducts are actively presented in the context 
of HLA or are simply colocalized, for instance as part of 
lipid rafts. Furthermore, the ability of hapten-modifi ed cuta-
neous protein to stimulate T cells from hypersensitive 
patients has not been evaluated.  

  Table 1.    Relative Expression of Several Xenobiotic Metabolizing Enzymes in Different Cell Types*   

 Cytochrome P450

MPO COX Refs1A1 1A2 1B1 2B6 2C9 2C19 2D6 2E1 3A4 3A5

Hepatocytes  +  ++  +  +  ++  +  +  ++  +++  +++  ND  ND   91 
Keratinocytes  +  ND  +  +   †   †  +  +   —  +  ND  ND   92  ,  93 
Lymphocytes  +   —  ++  ND  ND  ND  ++ ‡   ++  +  ND  +  +   94  ,  95 
Dendritic cells  +  +  +++  +  +  +  +  +   —  +   —  +   96-98 
    *MPO indicates myeloperoxidase; COX, cyclooxygenase; ND, not determined; CYP, cytochrome P450. +/++/+++ indicate relative expression within 
a given cell type. These are not intended to be used for comparison between different cell types. 
  † CYP2C family enzymes present, 99  although no data are available on individual enzymes. 
  ‡ High expression but possibly a truncated inactive form.    
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  IMMUNE SYSTEM 
 There is less known about the metabolic activity of cells of 
the immune system than is known about the metabolic activ-
ity of cells of the liver or the skin. CYP expression in periph-
eral blood lymphocytes has been assessed, 94  ,  121-123  although 
a wide variability in fi ndings 124  makes interpretation diffi -
cult. Other immune cells are not as well studied, but there is 
some evidence that monocyte-derived dendritic cells 96  and 
Langerhans cells 99  are metabolically active. A common fea-
ture of CYP expression in the immune system is the high 
levels of expression of CYP1B1, 125  which is not expressed 
hepatically. Furthermore, studies have shown that this iso-
form has specifi city for several xenobiotics, 126  suggesting 
that there is the potential for specifi c immunological activa-
tion of drugs. 
 Although CYP enzymes are the most widely studied in xeno-
biotic bioactivation, other enzyme systems, particularly 
 peroxidases, are also capable of oxidative metabolism of 
small molecules. Two of these, myeloperoxidase 127  and 
prostaglandin-H-synthase, 128  are highly expressed in cells of 
the immune system, particularly neutrophils and monocytes. 
Several drugs associated with a relatively high incidence 
of hypersensitivity reactions — including sulphamethoxa-
zole, 129  ,  130  carbamazepine, 131  dapsone, 130  and trimetho-
prim 132  — are metabolized to reactive intermediates by these 
systems. Neutrophils express both peroxidase systems (but 
low levels of CYPs) and can generate a powerful extracel-
lular oxidizing system when activated. For these reasons, 
and because of their sheer numbers in circulation, neutro-
phils have been described as  “ the greatest drug-metabolis-
ing engine outside of the liver. ”  133  The role of neutrophils 
in drug-induced lupus has been widely discussed and 
has been linked to the ability of lupus-inducing drugs to 
be  bioactivated by myeloperoxidase. 134  Additionally, anti-
neutrophil cytoplasm antibodies and autoantibodies to 
myeloperoxidase have been detected in drug-induced 
lupus, 135  ,  136  although no evidence has appeared of antibod-
ies to drug-modifi ed proteins. Langerhans cells and dendritic 
cells express prostaglandin H synthase 97  ,  137  but are negative 
for myeloperoxidase. 98  Although the specialized antigen-
presenting nature and metabolic activity of Langerhans and 
dendritic cells would presumably enhance their potential 
for initiating an immune response to haptenated proteins, 
this has not been unequivocally identifi ed either in vivo 
or in vitro.  

  CONCLUSION 
 Signifi cant progress has been made toward a better under-
standing of the mechanisms involved in drug hypersensi-
tivity, including the role of oxidative metabolism and 
reactive metabolites. Paradoxically, however, our increased 
understanding has cast doubts on the importance of several 

established hypotheses. Many questions remain to be 
answered: Is the primary T-cell response to free drug or to 
drug-protein adducts? Can the T-cell response shift from 
metabolite to primary drug over the course of a reaction or 
following recovery? Can the generation of reactive metabo-
lites act as a danger signal to induce a reaction, and is this a 
major predisposing determinant of individual susceptibility? 
Can external danger signals (concurrent infection, cell death, 
etc) increase the risk of a reaction? What proportion of the 
variation in susceptibility is due to variation in drug metabo-
lism? What role does the extrahepatic generation of metabo-
lites play in determining the location of the reaction? 
 Answering these questions will require the development of 
better animal models and innovative in vitro, pharmacoge-
netic, and clinical studies. Most important, we will need to 
better understand the connections between different models 
and various studies. The lessons of the last few years tell us 
that these tasks will not be easy, but the answers will come.    
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